Ad
related to: standard solution for titration of oxygen with hydrogen peroxide
Search results
Results From The WOW.Com Content Network
The iodometric titration is a general method to determine the concentration of an oxidising agent in solution. In an iodometric titration, a starch solution is used as an indicator since it can absorb the I 2 that is released, visually indicating a positive iodine-starch test with a deep blue hue. This absorption will cause the solution to ...
It is a redox titration that involves the use of permanganates to measure the amount of analyte present in unknown chemical samples. [1] It involves two steps, namely the titration of the analyte with potassium permanganate solution and then the standardization of potassium permanganate solution with standard sodium oxalate solution. The ...
In titrations, the concentration of analyte in solution can be determined by titrating the standard solution against the analyte solution to determine the threshold of neutralization. [9] For example, to calculate the concentration of hydrogen chloride, a standard solution of known concentration, such as 0.5 M sodium hydroxide, is titrated ...
Hydrogen peroxide works best as a propellant in extremely high concentrations (roughly over 70%). Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard pressure.
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
The peroxide value is defined as the amount of peroxide oxygen per 1 kilogram of fat or oil. Traditionally this was expressed in units of milliequivalents, although in SI units the appropriate option would be in millimoles per kilogram (N.B. 1 milliequivalents = 0.5 millimole; because 1 mEq of O2 =1 mmol/2 of O2 =0.5 mmol of O2, where 2 is valence).
Colorimetric analysis is a method of determining the concentration of a chemical element or chemical compound in a solution with the aid of a color reagent. It is applicable to both organic compounds and inorganic compounds and may be used with or without an enzymatic stage.
The amount of dissolved oxygen is directly proportional to the titration of iodine with a thiosulfate solution. [1] Today, the method is effectively used as its colorimetric modification, where the trivalent manganese produced on acidifying the brown suspension is directly reacted with ethylenediaminetetraacetic acid to give a pink color. [ 2 ]