When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function1 / Γ(z) ⁠ is an entire function.

  4. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    Suppose we wish to generate random variables from Gamma(n + δ, 1), where n is a non-negative integer and 0 < δ < 1. Using the fact that a Gamma(1, 1) distribution is the same as an Exp(1) distribution, and noting the method of generating exponential variables, we conclude that if U is uniformly distributed on (0, 1], then −ln U is ...

  5. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  6. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...

  7. Reciprocal gamma function - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_gamma_function

    Plot of ⁠ 1 / Γ(x) ⁠ along the real axis Reciprocal gamma function1 / Γ(z) ⁠ in the complex plane, plotted using domain coloring. In mathematics, the reciprocal gamma function is the function = (), where Γ(z) denotes the gamma function.

  8. Generalized gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_gamma_distribution

    The quantile function can be found by noting that (;,,) = ((/)) where is the cumulative distribution function of the gamma distribution with parameters = / and =. The quantile function is then given by inverting F {\displaystyle F} using known relations about inverse of composite functions , yielding:

  9. Spouge's approximation - Wikipedia

    en.wikipedia.org/wiki/Spouge's_approximation

    In mathematics, Spouge's approximation is a formula for computing an approximation of the gamma function. It was named after John L. Spouge, who defined the formula in a 1994 paper. [1] The formula is a modification of Stirling's approximation, and has the form