Ad
related to: area calculation with diameter
Search results
Results From The WOW.Com Content Network
The calculations Archimedes used to approximate the area numerically were laborious, and he stopped with a polygon of 96 sides. A faster method uses ideas of Willebrord Snell ( Cyclometricus , 1621), further developed by Christiaan Huygens ( De Circuli Magnitudine Inventa , 1654), described in Gerretsen & Verdenduin (1983 , pp. 243–250).
From these, it is easy to calculate the area (in cm 2) of the aortic valve by simply dividing the LV stroke volume (in cm 3) by the AV VTI (in cm) measured on the spectral Doppler display using continuous-wave Doppler. [citation needed] Stroke volume = 0.785(π/4) x Diameter 2 x VTI of LVOT Cross sectional area of LVOT = 0.785(π/4) x LVOT ...
A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2 .
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
Calculation of the area of a square whose length and width are 1 metre would be: 1 metre × 1 metre = 1 m 2. and so, a rectangle with different sides (say length of 3 metres and width of 2 metres) would have an area in square units that can be calculated as: 3 metres × 2 metres = 6 m 2. This is equivalent to 6 million square millimetres.
The area-equivalent radius of a 2D object is the radius of a circle with the same area as the object Cross sectional area of a trapezoidal open channel, red highlights the wetted perimeter, where water is in contact with the channel. The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter.
Area enclosed by a circle = π × area of the shaded square Main article: Area of a circle As proved by Archimedes , in his Measurement of a Circle , the area enclosed by a circle is equal to that of a triangle whose base has the length of the circle's circumference and whose height equals the circle's radius, [ 11 ] which comes to π ...
Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [ 2 ] [ 3 ] (units of m 2 /m 3 or m −1 ).