Search results
Results From The WOW.Com Content Network
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The gravitational field is a vector field that describes the gravitational force that would be applied on an object in any given point in space, ... For example ...
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
For example, the Newtonian gravitational field is a vector field: specifying its value at a point in spacetime requires three numbers, the components of the gravitational field vector at that point. Moreover, within each category (scalar, vector, tensor), a field can be either a classical field or a quantum field , depending on whether it is ...
Both Brans–Dicke theory and general relativity are examples of a class of relativistic classical field theories of gravitation, called metric theories.In these theories, spacetime is equipped with a metric tensor, , and the gravitational field is represented (in whole or in part) by the Riemann curvature tensor, which is determined by the metric tensor.
The intense gravitational fields around black holes create phenomena which are attributed to both gravitational and quantum effects. In these situations, a particle's Killing vector may be rotated such that its energy becomes negative. [7]
It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point. Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field. Gauss's law for ...