Search results
Results From The WOW.Com Content Network
Top-down approach: This is the direct fall-out of the recursive formulation of any problem. If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable ...
Static problem For a set of N numbers find the maximal one. The problem may be solved in O(N) time. Dynamic problem For an initial set of N numbers, dynamically maintain the maximal one when insertion and deletions are allowed. A well-known solution for this problem is using a self-balancing binary search tree. It takes space O(N), may be ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Examples of differential equations; Autonomous system (mathematics) Picard–Lindelöf theorem; Peano existence theorem; Carathéodory existence theorem; Numerical ordinary differential equations; Bendixson–Dulac theorem; Gradient conjecture; Recurrence plot; Limit cycle; Initial value problem; Clairaut's equation; Singular solution ...
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.
The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.
Linear dynamical systems are dynamical systems whose evolution functions are linear.While dynamical systems, in general, do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties.