Search results
Results From The WOW.Com Content Network
The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
Numerous other concepts and objects in mechanics, such as Hamilton's principle, Hamilton's principal function, the Hamilton–Jacobi equation, Cayley-Hamilton theorem are named after Hamilton. The Hamiltonian is the name of both a function (classical) and an operator (quantum) in physics, and, in a different sense, a term from graph theory .
Hamilton's equations have another advantage over Lagrange's equations: if a system has a symmetry, so that some coordinate does not occur in the Hamiltonian (i.e. a cyclic coordinate), the corresponding momentum coordinate is conserved along each trajectory, and that coordinate can be reduced to a constant in the other equations of the set.
Principles of Optics, colloquially known as Born and Wolf, is an optics textbook written by Max Born and Emil Wolf that was initially published in 1959 by Pergamon Press. [1] After going through six editions with Pergamon Press, the book was transferred to Cambridge University Press who issued an expanded seventh edition in 1999. [ 2 ]
Historically, in 1849, Sir George Stokes stated his optical reversion principle without attending to polarization. [ 21 ] [ 22 ] [ 23 ] Like the principles of thermodynamics, this principle is reliable enough to use as a check on the correct performance of experiments, in contrast with the usual situation in which the experiments are tests of a ...
According to the Hockney–Falco thesis, such optical aids were central to much of the great art from the Renaissance period to the dawn of modern art. The Hockney–Falco thesis is a controversial theory of art history , proposed by artist David Hockney in 1999 and further advanced with physicist Charles M. Falco since 2000 (together as well ...