When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DNA gyrase - Wikipedia

    en.wikipedia.org/wiki/DNA_gyrase

    DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases [1] that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase [2] or by helicase in front of the progressing replication fork.

  3. Type II topoisomerase - Wikipedia

    en.wikipedia.org/wiki/Type_II_topoisomerase

    Type II topoisomerases increase or decrease the linking number of a DNA loop by 2 units, and it promotes chromosome disentanglement. For example, DNA gyrase, a type II topoisomerase observed in E. coli and most other prokaryotes, introduces negative supercoils and decreases the linking number by 2.

  4. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    With DNA in its "relaxed" state, a strand usually circles the axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. [43] If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together.

  5. DNA supercoil - Wikipedia

    en.wikipedia.org/wiki/DNA_supercoil

    A negatively supercoiled DNA molecule will produce either a one-start left-handed helix, the toroid, or a two-start right-handed helix with terminal loops, the plectoneme. Plectonemes are typically more common in nature, and this is the shape most bacterial plasmids will take.

  6. Septum (cell biology) - Wikipedia

    en.wikipedia.org/wiki/Septum_(cell_biology)

    The process of bacterial cell division is defined as binary fission, where a bacterium splits to produce two daughter cells. [4] This division occurs during cytokinesis, which in bacteria is made possible due to the divisome (a specific large protein complex) and FtsZ (the ancestor to tubulin for bacteria that drives cytokinesis itself). [4]

  7. Bacterial cellular morphologies - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cellular...

    Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]

  8. Restriction modification system - Wikipedia

    en.wikipedia.org/wiki/Restriction_modification...

    The restriction modification system (RM system) is found in bacteria and archaea, and provides a defense against foreign DNA, such as that borne by bacteriophages.. Bacteria have restriction enzymes, also called restriction endonucleases, which cleave double-stranded DNA at specific points into fragments, which are then degraded further by other endonucleases.

  9. Bacterial cell structure - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cell_structure

    There are two main types of bacterial cell walls, those of Gram-positive bacteria and those of Gram-negative bacteria, which are differentiated by their Gram staining characteristics. For both these types of bacteria, particles of approximately 2 nm can pass through the peptidoglycan. [3]