When.com Web Search

  1. Ad

    related to: gravitational pull example science

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    That is, the individual gravitational forces exerted on a point at radius r 0 by the elements of the mass outside the radius r 0 cancel each other. As a consequence, for example, within a shell of uniform thickness and density there is no net gravitational acceleration anywhere within the hollow sphere.

  3. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  4. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  5. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  6. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...

  7. Ridge push - Wikipedia

    en.wikipedia.org/wiki/Ridge_push

    Diagram of a mid-ocean ridge showing ridge push near the mid-ocean ridge and the lack of ridge push after 90 Ma. Ridge push is the result of gravitational forces acting on the young, raised oceanic lithosphere around mid-ocean ridges, causing it to slide down the similarly raised but weaker asthenosphere and push on lithospheric material farther from the ridges.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  9. Reaction (physics) - Wikipedia

    en.wikipedia.org/wiki/Reaction_(physics)

    The Earth, among other planets, orbits the Sun because the Sun exerts a gravitational pull that acts as a centripetal force, holding the Earth to it, which would otherwise go shooting off into space. If the Sun's pull is considered an action, then Earth simultaneously exerts a reaction as a gravitational pull on the Sun. Earth's pull has the ...