When.com Web Search

  1. Ad

    related to: applications of vectors in physics

Search results

  1. Results From The WOW.Com Content Network
  2. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms .

  3. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    In physics, a vector is additionally distinguished by how its coordinates change when one measures the same vector with respect to a different background coordinate system. The transformation properties of vectors distinguish a vector as a geometrically distinct entity from a simple list of scalars, or from a covector .

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms.

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  7. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    It is positive definite: for all vectors x, x ⋅ x ≥ 0 , with equality if and only if x = 0. An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) inner product. A vector space equipped with such an inner product is known as a (real) inner product space.

  8. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Consider n-dimensional vectors that are formed as a list of n scalars, such as the three-dimensional vectors = [] = []. These vectors are said to be scalar multiples of each other, or parallel or collinear , if there is a scalar λ such that x = λ y . {\displaystyle \mathbf {x} =\lambda \mathbf {y} .}

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field T {\displaystyle \mathbf {T} } of non-zero order k is written as div ⁡ ( T ) = ∇ ⋅ T {\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} } , a contraction of a tensor field ...