Search results
Results From The WOW.Com Content Network
Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
" In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true. The negation is "There is at least one quadrilateral that does not have four sides.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...
A thought experiment by Aristotle to explore the concept of future contingents and the problem of determinism and free will. Aristotle's theses The formulas ¬ (¬ A → A) and ¬ (A → ¬A) in propositional logic; they are theorems in connexive logic but not in classical logic. [17] [18] [19] See also Boethius' theses. arity
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected ...
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.