When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    These models have the generality to distinguish the type of entity and relation, temporal information, path information, underlay structured information, [18] and resolve the limitations of distance-based and semantic-matching-based models in representing all the features of a knowledge graph. [1] The use of deep learning for knowledge graph ...

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    GraphRAG with a knowledge graph combining access patterns for unstructured, structured, and mixed data GraphRAG [ 40 ] (coined by Microsoft Research ) is a technique that extends RAG with the use of a knowledge graph (usually, LLM-generated) to allow the model to connect disparate pieces of information, synthesize insights, and holistically ...

  4. Knowledge graph - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph

    In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...

  5. Retrieval-augmented generation - Wikipedia

    en.wikipedia.org/wiki/Retrieval-augmented_generation

    Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.

  6. Vadalog - Wikipedia

    en.wikipedia.org/wiki/Vadalog

    A cyclical dependency graph. A rule is an expression of the form n :− a 1, ..., a n where: . a 1, ..., a n are the atoms of the body,; n is the atom of the head.; A rule allows to infer new knowledge starting from the variables that are in the body: when all the variables in the body of a rule are successfully assigned, the rule is activated and it results in the derivation of the head ...

  7. Category:Knowledge graphs - Wikipedia

    en.wikipedia.org/wiki/Category:Knowledge_graphs

    A knowledge graph is a knowledge base that uses a graph-structured data model. Common applications are for gathering lightly-structured associations between topic-specific knowledge in a range of disciplines, which each have their own more detailed data shapes and schemas .

  8. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  9. Frame (artificial intelligence) - Wikipedia

    en.wikipedia.org/wiki/Frame_(artificial...

    An example is the Web Ontology Language (OWL) standard for describing information on the Internet. OWL is a standard to provide a semantic layer on top of the Internet. The goal is that rather than organizing the web using keywords as most applications (e.g. Google) do today the web can be organized by concepts organized in an ontology.