When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  3. Recoil temperature - Wikipedia

    en.wikipedia.org/wiki/Recoil_temperature

    In condensed matter physics and atomic physics, the recoil temperature is a fundamental lower limit of temperature attainable by some laser cooling schemes. When an atom decays from an excited electronic state at rest to a lower energy electronic state by the spontaneous emission of a photon, due to conservation of momentum, the atom gains momentum equivalent to the momentum of the photon.

  4. Spin angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Spin_angular_momentum_of_light

    The general expression for the spin angular momentum is [1] =, where is the speed of light in free space and is the conjugate canonical momentum of the vector potential.The general expression for the orbital angular momentum of light is =, where = {,,,} denotes four indices of the spacetime and Einstein's summation convention has been applied.

  5. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change ...

  6. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    This is different from the parabolic energy-momentum relation for classical particles. Thus, in practice, the linearity or the non-parabolicity of the energy-momentum relation is considered as a key feature for relativistic particles. These two types of relativistic particles are remarked as massless and massive, respectively.

  7. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...

  8. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  9. Photon structure function - Wikipedia

    en.wikipedia.org/wiki/Photon_structure_function

    Fig 2: Measured photon structure function versus x for Q 2 = 4.3 GeV 2 (blue crosses) and 39.7 GeV 2 (black crosses) compared to the QCD prediction (red, green) explained in the text. The hadronic system produced in two-photon reactions has in general a rather high momentum along the beam direction resulting in small hadronic scattering angles.