Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
This is generally considered one of the most important open questions in mathematics and theoretical computer science as it has far-reaching consequences to other problems in mathematics, to biology, [14] philosophy [15] and to cryptography (see P versus NP problem proof consequences).
Advanced Level (A-Level) Mathematics is a qualification of further education taken in the United Kingdom (and occasionally other countries as well). In the UK, A-Level exams are traditionally taken by 17-18 year-olds after a two-year course at a sixth form or college .
A classic question in philosophy asks whether mathematical proofs are analytic or synthetic. Kant, who introduced the analytic–synthetic distinction, believed mathematical proofs are synthetic, whereas Quine argued in his 1951 "Two Dogmas of Empiricism" that such a distinction is untenable. [13] Proofs may be admired for their mathematical ...
List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that Peano arithmetic is consistent. There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as Zermelo–Fraenkel set theory. These do not provide a resolution to ...
The proof was completed by Werner Ballmann about 50 years later. Littlewood–Richardson rule. Robinson published an incomplete proof in 1938, though the gaps were not noticed for many years. The first complete proofs were given by Marcel-Paul Schützenberger in 1977 and Thomas in 1974. Class numbers of imaginary quadratic fields.
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges