Search results
Results From The WOW.Com Content Network
Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian. The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr.
The dot planimeter is physical device for estimating the area of shapes based on the same principle. It consists of a square grid of dots, printed on a transparent sheet; the area of a shape can be estimated as the product of the number of dots in the shape with the area of a grid square. [8]
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
A steradian can be defined as the solid angle subtended at the centre of a unit sphere by a unit area (of any shape) on its surface. For a general sphere of radius r, any portion of its surface with area A = r 2 subtends one steradian at its centre. [3] A solid angle in the form of a circular cone is related to the area it cuts out of a sphere:
The elevation is the signed angle from the x-y reference plane to the radial line segment OP, where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination. Thus, if the inclination is 60 degrees (= π / 3 radians), then the elevation is 30 degrees ...
Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.