When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radon transform - Wikipedia

    en.wikipedia.org/wiki/Radon_transform

    Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.

  3. Projection-slice theorem - Wikipedia

    en.wikipedia.org/wiki/Projection-slice_theorem

    Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if

  4. Johann Radon - Wikipedia

    en.wikipedia.org/wiki/Johann_Radon

    the Radon measure concept of measure as linear functional; the Radon transform, in integral geometry, based on integration over hyperplanes—with application to tomography for scanners (see tomographic reconstruction); Radon's theorem, that d + 2 points in d dimensions may always be partitioned into two subsets with intersecting convex hulls;

  5. Funk transform - Wikipedia

    en.wikipedia.org/wiki/Funk_transform

    In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).

  6. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    In practice of tomographic image reconstruction, often a stabilized and discretized version of the inverse Radon transform is used, known as the filtered back projection algorithm. [ 2 ] With a sampled discrete system, the inverse Radon transform is

  7. Orbital integral - Wikipedia

    en.wikipedia.org/wiki/Orbital_integral

    A central problem of integral geometry is to reconstruct a function from knowledge of its orbital integrals. The Funk transform and Radon transform are two special cases. When G/K is a Riemannian symmetric space, the problem is trivial, since M r ƒ(x) is the average value of ƒ over the generalized sphere of radius r, and

  8. Radon's theorem - Wikipedia

    en.wikipedia.org/wiki/Radon's_theorem

    The Radon point of any four points in the plane is their geometric median, the point that minimizes the sum of distances to the other points. [5] [6] Radon's theorem forms a key step of a standard proof of Helly's theorem on intersections of convex sets; [7] this proof was the motivation for Radon's original discovery of Radon's theorem.

  9. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform ...