Search results
Results From The WOW.Com Content Network
The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...
This means that the rank at the critical point is lower than the rank at some neighbour point. In other words, let k be the maximal dimension of the open balls contained in the image of f; then a point is critical if all minors of rank k of f are zero. In the case where m = n = k, a point is critical if the Jacobian determinant is zero.
A point at which the flux is directed inward has negative divergence, and is often called a "sink" of the field. The greater the flux of field through a small surface enclosing a given point, the greater the value of divergence at that point. A point at which there is zero flux through an enclosing surface has zero divergence.
Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
In coordinate geometry, the Section formula is a formula used to find the ratio in which a line segment is divided by a point internally or externally. [1] It is used to find out the centroid, incenter and excenters of a triangle. In physics, it is used to find the center of mass of systems, equilibrium points, etc. [2] [3] [4] [5]
Bessel functions describe the radial part of vibrations of a circular membrane.. Bessel functions, first defined by the mathematician Daniel Bernoulli [1] and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation + + = for an arbitrary complex number, which represents the order of the Bessel function.
Four ordered points on a projective range are called harmonic points when there is a tetrastigm in the plane such that the first and third are codots and the other two points are on the connectors of the third codot. [6] If p is a point not on a straight with harmonic points, the joins of p with the points are harmonic straights.