When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Z-transform - Wikipedia

    en.wikipedia.org/wiki/Z-transform

    The inverse Z-transform is then determined by looking up each term in a standard table of Z-transform pairs. This method is widely used for its efficiency and simplicity, especially when the original function can be easily broken down into recognizable components.

  3. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  4. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  5. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number. It typically represents time, although it can represent any independent dimension. s is the complex frequency domain parameter, and Re(s) is its real part. n is an integer. α, τ, and ω are real numbers. q is a complex number.

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In other words, the output transform is the pointwise product of the input transform with a third transform (known as a transfer function). See Convolution theorem for a derivation of that property of convolution. Conversely, convolution can be derived as the inverse Fourier transform of the pointwise product of two Fourier transforms.

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In particular, the function f has a differentiable inverse function in a neighborhood of a point x if and only if the Jacobian determinant is nonzero at x (see inverse function theorem for an explanation of this and Jacobian conjecture for a related problem of global invertibility).

  8. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    The chirp Z-transform (CZT) is a generalization of the discrete Fourier transform (DFT). While the DFT samples the Z plane at uniformly-spaced points along the unit circle, the chirp Z-transform samples along spiral arcs in the Z-plane, corresponding to straight lines in the S plane .

  9. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).