Ads
related to: what is a perimeter maths
Search results
Results From The WOW.Com Content Network
Perimeter is the distance around a two dimensional shape, a measurement of the distance around something; the length of the boundary. A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.
A perimeter is a path that surrounds a two-dimensional shape. The term may be used either for the path or its length - it can be thought of as the length of the outline of a shape. The perimeter of a circle or ellipse is called its circumference. Area is the quantity that expresses the extent of a two-dimensional figure or shape.
In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [10]
Given a circle, let u n be the perimeter of an inscribed regular n-gon, and let U n be the perimeter of a circumscribed regular n-gon. Then u n and U n are lower and upper bounds for the circumference of the circle that become sharper and sharper as n increases, and their average (u n + U n)/2 is an especially good approximation to the ...
The circle is the shape with the largest area for a given length of perimeter (see Isoperimetric inequality). The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R).
A common compactness measure is the isoperimetric quotient, the ratio of the area of the shape to the area of a circle (the most compact shape) having the same perimeter. . In the plane, this is equivalent to the Polsby–Popper t
For any shape, there is a similar equable shape: if a shape S has perimeter p and area A, then scaling S by a factor of p/A leads to an equable shape. Alternatively, one may find equable shapes by setting up and solving an equation in which the area equals the perimeter. In the case of the square, for instance, this equation is