Search results
Results From The WOW.Com Content Network
Cranial venous outflow obstruction, also referred to as impaired cranial venous outflow, impaired cerebral venous outflow, cerebral venous impairment is a vascular disorder that involves the impairment of venous drainage from the cerebral veins of the human brain. [1] [2] The cause of cranial venous outflow obstruction is not fully understood.
The venous drainage of the cerebrum can be separated into two subdivisions: superficial and deep. The superficial system. The superficial system is composed of dural venous sinuses, sinuses (channels) within the dura mater. The dural sinuses are therefore located on the surface of the cerebrum.
3D model of cerebral veins. In human anatomy, the cerebral veins are blood vessels in the cerebral circulation which drain blood from the cerebrum of the human brain.They are divisible into external (superficial cerebral veins) and internal (internal cerebral veins) groups according to the outer or inner parts of the hemispheres they drain into.
These sinuses play a crucial role in cerebral venous drainage. A dural venous sinus, in human anatomy, is any of the channels of a branching complex sinus network that lies between layers of the dura mater, the outermost covering of the brain, and functions to collect oxygen-depleted blood. Unlike veins, these sinuses possess no muscular coat.
In peripheral organs, lymphatic vessels are responsible for conducting lymph between different parts of the body. In general, lymphatic drainage is important for maintaining fluid homeostasis as well as providing a means for immune cells to traffic into draining lymph nodes from other parts of the body, allowing for immune surveillance of bodily tissues.
Absence of the great cerebral vein is a congenital disorder.The deep cerebral veins of the brain normally drain through the great cerebral vein. In its absence, the veins from the diencephalon and the basal ganglia drain laterally into the transverse sinus instead of conjoining in the midline through the Galenic drainage system. [8]
The veins of the brain, both the superficial veins and the deep venous system, empty into the dural venous sinuses, which carry blood back to the jugular vein and thence to the heart. In cerebral venous thrombosis, blood clots usually form both in the veins of the brain and the venous sinuses.
Glymphatic flow was initially believed to be the complete answer to the long-standing question of how the sensitive neural tissue of the CNS functions in the perceived absence of a lymphatic drainage pathway for extracellular proteins, excess fluid, and metabolic waste products.