When.com Web Search

  1. Ads

    related to: infinite horizon formula physics 3 equations calculator algebra 7

Search results

  1. Results From The WOW.Com Content Network
  2. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    which is known as the discrete-time dynamic Riccati equation of this problem. The steady-state characterization of P, relevant for the infinite-horizon problem in which T goes to infinity, can be found by iterating the dynamic equation repeatedly until it converges; then P is characterized by removing the time subscripts from the dynamic equation.

  3. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to zero, and the terminal time is taken in the limit (this last assumption is what is known as infinite horizon). The LQR ...

  4. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    If the state equation is polynomial then the problem is known as the polynomial-quadratic regulator (PQR). Again, the Al'Brekht algorithm can be applied to reduce this problem to a large linear one which can be solved with a generalization of the Bartels-Stewart algorithm ; this is feasible provided that the degree of the polynomial is not too ...

  5. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Together, the state and costate equations describe the Hamiltonian dynamical system (again analogous to but distinct from the Hamiltonian system in physics), the solution of which involves a two-point boundary value problem, given that there are boundary conditions involving two different points in time, the initial time (the differential ...

  6. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Even after such symmetry reductions, the reduced system of equations is often difficult to solve. For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations.

  7. Bekenstein bound - Wikipedia

    en.wikipedia.org/wiki/Bekenstein_bound

    According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...

  8. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  9. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    In the context of general relativity, it means the problem of finding solutions to Einstein's field equations — a system of hyperbolic partial differential equations — given some initial data on a hypersurface. Studying the Cauchy problem allows one to formulate the concept of causality in general relativity, as well as 'parametrising ...