When.com Web Search

  1. Ads

    related to: magnet gauss chart

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .

  3. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]

  4. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    A magnet's North pole is defined as the pole that is attracted by the Earth's North Magnetic Pole, in the arctic region, when the magnet is suspended so it can turn freely. Since opposite poles attract, the North Magnetic Pole of the Earth is really the south pole of its magnetic field (the place where the field is directed downward into the ...

  5. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or Φ B. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds or V⋅s), and the CGS unit is the maxwell. [1]

  6. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    In the Gaussian system, unlike the ISQ, the electric field E G and the magnetic field B G have the same dimension. This amounts to a factor of c between how B is defined in the two unit systems, on top of the other differences. [3] (The same factor applies to other magnetic quantities such as the magnetic field, H, and magnetization, M.)

  7. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles. There are two simplified models for the nature of these dipoles: the magnetic pole model and the Amperian loop model .

  8. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    For zero net magnetic charge density (ρ m = 0), the original form of Gauss's magnetism law is the result. The modified formula for use with the SI is not standard and depends on the choice of defining equation for the magnetic charge and current; in one variation, magnetic charge has units of webers, in another it has units of ampere-meters.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to infinity as shown here with the magnetic field due to a ring of current. Gauss's law for magnetism states that electric charges have no magnetic analogues, called magnetic monopoles; no north or south magnetic poles exist in isolation. [3]