Ad
related to: positive gradient meaning in physics examples questionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, the gradient of the function (,,) = + is (,,) = + (). or (,,) = []. In some applications it is customary to represent the gradient as a row vector or column vector of its components in a rectangular coordinate system; this article follows the convention of the gradient being a column vector, while the derivative is a row ...
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Since orthogonal transformations are actually rotations and reflections, the invariance conditions mean that vectors of a central field are always directed towards, or away from, 0; this is an alternate (and simpler) definition. A central field is always a gradient field, since defining it on one semiaxis and integrating gives an antigradient.
The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane. Near the Earth's surface, this horizontal pressure gradient force is directed from higher toward lower pressure. Its particular orientation at any one time and place depends strongly on the weather ...
As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value.
In recent years, [when?] thermal physics has applied the definition of chemical potential to systems in particle physics and its associated processes. For example, in a quark–gluon plasma or other QCD matter , at every point in space there is a chemical potential for photons , a chemical potential for electrons, a chemical potential for ...
A familiar example is potential energy due to gravity. Vector field (right) and corresponding scalar potential (left). A scalar potential is a fundamental concept in vector analysis and physics (the adjective scalar is frequently omitted if there is no danger of confusion with vector potential). The scalar potential is an example of a scalar field.
The first derivatives of the field, or the second derivatives of the potential, is the electric field gradient. The nine components of the EFG are thus defined as the second partial derivatives of the electrostatic potential, evaluated at the position of a nucleus: