Search results
Results From The WOW.Com Content Network
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
Two-way string-matching algorithm; Z. Zhu–Takaoka string matching algorithm This page was last edited on 1 September 2018, at 13:33 (UTC). ...
Gestalt pattern matching, [1] also Ratcliff/Obershelp pattern recognition, [2] is a string-matching algorithm for determining the similarity of two strings. It was developed in 1983 by John W. Ratcliff and John A. Obershelp and published in the Dr. Dobb's Journal in July 1988.
Algorithms for matching wildcards in simple string-matching situations have been developed in a number of recursive and non-recursive varieties. [ 11 ] Tree patterns
Trie data structures are commonly used in predictive text or autocomplete dictionaries, and approximate matching algorithms. [11] Tries enable faster searches, occupy less space, especially when the set contains large number of short strings, thus used in spell checking, hyphenation applications and longest prefix match algorithms.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions. Adding transpositions adds significant complexity.