Search results
Results From The WOW.Com Content Network
The first pharmacokinetic model described in the scientific literature [2] was in fact a PBPK model. It led, however, to computations intractable at that time. The focus shifted then to simpler models, [3] for which analytical solutions could be obtained (such solutions were sums of exponential terms, which led to further simplifications.)
The models used in non-linear pharmacokinetics are largely based on Michaelis–Menten kinetics. A reaction's factors of non-linearity include the following: Multiphasic absorption: Drugs injected intravenously are removed from the plasma through two primary mechanisms: (1) Distribution to body tissues and (2) metabolism + excretion of the ...
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a. [1] K a values can typically only be found in research articles. [2]
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
Absorption is the journey of a drug travelling from the site of administration to the site of action. [ 1 ] [ 2 ] The drug travels by some route of administration ( oral , topical-dermal , etc.) in a chosen dosage form (e.g., tablets , capsules , or in solution ). [ 3 ]
[A] can provide intuitive insight about the order of each of the reagents. If plots of v / [A] vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of v / [B] vs. [A]; overlay is consistent with a first-order dependence on [B].
The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be: Limiting step: adsorption/desorption