Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Combining either half reaction pair yields the same overall decomposition of water into oxygen and hydrogen: 2 H 2 O( l ) → 2 H 2 ( g ) + O 2 ( g ) The number of hydrogen molecules produced is thus twice the number of oxygen molecules, in keeping with the facts that both hydrogen and oxygen are diatomic molecules and water molecules contain ...
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
Ethyl sulfate (IUPAC name: ethyl hydrogen sulfate), also known as sulfovinic acid, is an organic chemical compound used as an intermediate in the production of ethanol from ethylene. It is the ethyl ester of sulfuric acid.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate.
Oxygen and nitrogen atoms also promote fragmentation through the formation of ketones and imines respectively. Oxygen Stabilized Fragmentation. Sulfur is also capable of promoting fragmentation, albeit at a longer range than oxygen or nitrogen. Reaction mechanism for sulfur-stabilized Beckmann fragmentation.
To selectively form the allyl alcohol and avoid the 1,4 product, the Luche reduction uses "cerium borohydride" generated in situ from NaBH 4 and CeCl 3 (H 2 O) 7 [21] [22] The hydride source Zn(BH 4) 2 also shows 1,2 selectivity, as well as greater diastereoselectivity. It does so by coordinating not only to the carbonyl oxygen but also to ...