When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Descartes's theorem (plane geometry) Dinostratus' theorem (geometry, analysis) Equal incircles theorem (Euclidean geometry) Euler's quadrilateral theorem ; Euler's theorem in geometry (triangle geometry) Exterior angle theorem (triangle geometry) Feuerbach's theorem ; Finsler–Hadwiger theorem ; Five circles theorem

  3. Problems and Theorems in Analysis - Wikipedia

    en.wikipedia.org/wiki/Problems_and_Theorems_in...

    [7]: xii–xiii, xvii–xviii The section on geometry (IX) contains many problems contributed by Loewner (in differential geometry) and Hirsch (in algebraic geometry). [4]: 27 The book was unique at the time because of its arrangement, less by topic and more by method of solution, so arranged in order to build up the student's problem-solving ...

  4. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

  5. Clifford's circle theorems - Wikipedia

    en.wikipedia.org/wiki/Clifford's_circle_theorems

    The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...

  6. Category:Theorems in geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_in_geometry

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  7. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .

  8. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Near the beginning of the first book of the Elements, Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath): [16] "Let the following be postulated": "To draw a straight line from any point to any point." "To produce [extend] a finite straight line continuously in a straight line."

  9. Geometrization conjecture - Wikipedia

    en.wikipedia.org/wiki/Geometrization_conjecture

    A model geometry is a simply connected smooth manifold X together with a transitive action of a Lie group G on X with compact stabilizers. A model geometry is called maximal if G is maximal among groups acting smoothly and transitively on X with compact stabilizers. Sometimes this condition is included in the definition of a model geometry.