When.com Web Search

  1. Ad

    related to: field of fractions formula examples in real life situation using function

Search results

  1. Results From The WOW.Com Content Network
  2. Field of fractions - Wikipedia

    en.wikipedia.org/wiki/Field_of_fractions

    The field of fractions of an integral domain is sometimes denoted by ⁡ or ⁡ (), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of . All four are in common usage, but are not to be confused with the quotient of a ring by an ideal , which is a quite different concept.

  3. Function field (scheme theory) - Wikipedia

    en.wikipedia.org/wiki/Function_field_(scheme_theory)

    In fact, the fraction fields of the rings of regular functions on any affine open set will be the same, so we define, for any U, K X (U) to be the common fraction field of any ring of regular functions on any open affine subset of X. Alternatively, one can define the function field in this case to be the local ring of the generic point.

  4. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    The function field of the n-dimensional space over a field F is F(x 1, ..., x n), i.e., the field consisting of ratios of polynomials in n indeterminates. The function field of X is the same as the one of any open dense subvariety. In other words, the function field is insensitive to replacing X by a (slightly) smaller subvariety.

  5. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  6. Algebraic function field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function_field

    The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.

  7. Function field of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Function_field_of_an...

    In algebraic geometry, the function field of an algebraic variety V consists of objects that are interpreted as rational functions on V.In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]

  9. Valuation (algebra) - Wikipedia

    en.wikipedia.org/wiki/Valuation_(algebra)

    The previous example can be generalized to Dedekind domains. Let R be a Dedekind domain, K its field of fractions, and let P be a non-zero prime ideal of R. Then, the localization of R at P, denoted R P, is a principal ideal domain whose field of fractions is K.