Search results
Results From The WOW.Com Content Network
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [53] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [54]
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction—each of which may lead to a simplified ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior ...
denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold . , denote the tangent spaces of , at the points , , respectively. denotes the cotangent space of at the point .
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus —the study of the area beneath a curve.