When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Both the Fibonacci sequence and the sequence of Lucas numbers can be used to generate approximate forms of the golden spiral (which is a special form of a logarithmic spiral) using quarter-circles with radii from these sequences, differing only slightly from the true golden logarithmic spiral. Fibonacci spiral is generally the term used for ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A Fibonacci prime is a Fibonacci number that is prime. The first few are: [46] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [47] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.

  5. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.

  6. Spiral - Wikipedia

    en.wikipedia.org/wiki/Spiral

    Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.

  7. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    In 1202, Leonardo Fibonacci introduced the Fibonacci sequence to the western world with his book Liber Abaci. [5] Fibonacci presented a thought experiment on the growth of an idealized rabbit population. [6] Johannes Kepler (1571–1630) pointed out the presence of the Fibonacci sequence in nature, using it to explain the pentagonal form of ...

  8. List of spirals - Wikipedia

    en.wikipedia.org/wiki/List_of_spirals

    logarithmic spiral (also known as equiangular spiral) 1638 [4] = Approximations of this are found in nature Fibonacci spiral: circular arcs connecting the opposite corners of squares in the Fibonacci tiling: approximation of the golden spiral golden spiral

  9. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .