When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ternary operation - Wikipedia

    en.wikipedia.org/wiki/Ternary_operation

    In mathematics, a ternary operation is an n-ary operation with n = 3. A ternary operation on a set A takes any given three elements of A and combines them to form a single element of A . In computer science , a ternary operator is an operator that takes three arguments as input and returns one output.

  3. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  4. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured.

  5. Planar ternary ring - Wikipedia

    en.wikipedia.org/wiki/Planar_ternary_ring

    A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall [1] to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation T {\displaystyle T} is defined by T ( a , b , c ) = a b + c ...

  6. Octant (solid geometry) - Wikipedia

    en.wikipedia.org/wiki/Octant_(solid_geometry)

    The eight (±,±,±) coordinates of the cube vertices are used to denote them. The horizontal plane shows the four quadrants between x- and y-axis. (Vertex numbers are little-endian balanced ternary.) An octant in solid geometry is one of the eight divisions of a Euclidean three-dimensional coordinate system defined

  7. Sierpiński curve - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_curve

    Here is a function coded in Java that will compute the relative position of any point on the Sierpiński curve (that is, a pseudo-inverse value). It takes as input the coordinates of the point (x,y) to be inverted, and the corners of an enclosing right isosceles triangle (ax, ay), (bx, by), and (cx, cy).

  8. Incidence structure - Wikipedia

    en.wikipedia.org/wiki/Incidence_structure

    Any graph (which need not be simple; loops and multiple edges are allowed) is a uniform incidence structure with two points per line. For these examples, the vertices of the graph form the point set, the edges of the graph form the line set, and incidence means that a vertex is an endpoint of an edge.

  9. Calculus on Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_Euclidean_space

    For functions defined in the plane or more generally on an Euclidean space , it is necessary to consider functions that are vector-valued or matrix-valued. It is also conceptually helpful to do this in an invariant manner (i.e., a coordinate-free way).

  1. Related searches ternary function euclidean plane example problems pdf printable free spanish

    ternary function euclidean planeternary operation examples
    ternary function examplesternary rings
    ternary function in python