Search results
Results From The WOW.Com Content Network
Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. [1] It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity ...
For this, they forced E. coli planktonic cells into a swarming-cell-phenotype by inhibiting cell division (leading to cell elongation) and by deletion of the chemosensory system (leading to smooth swimming cells that do not tumble). The increase of bacterial density inside the channel led to the formation of progressively larger rafts. Cells ...
A hypothesis presented by M. Harold and colleagues suggests that tip growth in higher plants is amoebic in nature, and is not caused by turgor pressure as is widely believed, meaning that extension is caused by the actin cytoskeleton in these plant cells. Regulation of cell growth is implied to be caused by cytoplasmic micro-tubules which ...
In comparison to batch culture, bacteria are maintained in exponential growth phase, and the growth rate of the bacteria is known. Related devices include turbidostats and auxostats . When Escherichia coli is growing very slowly with a doubling time of 16 hours in a chemostat most cells have a single chromosome.
When the rains return and soils become wet, the osmotic gradient between the bacterial cells and the soil water causes the cells to gain water quickly. Under these conditions, many bacterial cells burst, releasing a pulse of nutrients. [64] Decomposition rates also tend to be slower in acidic soils. [64]
Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase, a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag ...
In this response, bacterial cells can secrete extracellular polymeric substances to form a film that can provide support to the bacterial colony, such as by improving their ability to adhere to a surface. [4] Another common stress response is latency. In a latent states, a cell will slow down its metabolism and become virtually dormant.
Lysogens can remain in the lysogenic cycle for many generations but can switch to the lytic cycle at any time via a process known as induction. [8] During induction, prophage DNA is excised from the bacterial genome and is transcribed and translated to make coat proteins for the virus and regulate lytic growth. [8] Lysogenic Cycle [9]