Search results
Results From The WOW.Com Content Network
For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b , and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter.
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y-axis which are half the maximum ...
Any exponential function can be written as the self-composition (()) for infinitely many possible choices of .In particular, for every in the open interval (,) and for every continuous strictly increasing function from [,] onto [,], there is an extension of this function to a continuous strictly increasing function on the real numbers such that (()) = . [4]
This point crosses the y-axis at some point y = t. One can show using simple geometry that t = tan(φ/2). The equation for the drawn line is y = (1 + x)t. The equation for the intersection of the line and circle is then a quadratic equation involving t. The two solutions to this equation are (−1, 0) and (cos φ, sin φ).
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
If Y has a half-normal distribution, then (Y/σ) 2 has a chi square distribution with 1 degree of freedom, i.e. Y/σ has a chi distribution with 1 degree of freedom. The half-normal distribution is a special case of the generalized gamma distribution with d = 1, p = 2, a = 2 σ {\displaystyle {\sqrt {2}}\sigma } .
More generally, a half-space is either of the two parts into which a hyperplane divides an n-dimensional space. [2] That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane.