When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  3. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The Euclidean distance is the prototypical example of the distance in a metric space, [10] and obeys all the defining properties of a metric space: [11] It is symmetric, meaning that for all points and , (,) = (,). That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is ...

  4. 1-center problem - Wikipedia

    en.wikipedia.org/wiki/1-center_problem

    There are numerous particular cases of the problem, depending on the choice of the locations both of demand points and facilities, as well as the distance function. A simple special case is when the feasible locations and demand points are in the plane with Euclidean distance as transportation cost ( planar minmax Euclidean facility location ...

  5. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  6. Falconer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Falconer's_conjecture

    Falconer (1985) proved that Borel sets with Hausdorff dimension greater than (+) / have distance sets with nonzero measure. [2] He motivated this result as a multidimensional generalization of the Steinhaus theorem, a previous result of Hugo Steinhaus proving that every set of real numbers with nonzero measure must have a difference set that contains an interval of the form (,) for some >. [3]

  7. Lloyd's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lloyd's_algorithm

    Lloyd's algorithm is usually used in a Euclidean space. The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the ...

  8. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  9. Distance geometry - Wikipedia

    en.wikipedia.org/wiki/Distance_geometry

    Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [1] [2] [3] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.