When.com Web Search

  1. Ad

    related to: area calculator for a triangle with 3 sides

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    Three of them are the medians, which are the only area bisectors that go through the centroid. Three other area bisectors are parallel to the triangle's sides. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter. There can be one, two, or three of these for any given ...

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠, ⁠ ⁠, ⁠ ⁠. ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, = (+ +), the area ⁠ ⁠ is [1]

  4. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Given a triangle with sides of length a, b, and c, if a 2 + b 2 = c 2, then the angle between sides a and b is a right angle. For any three positive real numbers a, b, and c such that a 2 + b 2 = c 2, there exists a triangle with sides a, b and c as a consequence of the converse of the triangle inequality.

  5. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  6. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]

  7. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1,y 1), (x 2,y 2), and (x 3,y 3). The shoelace formula can also be used to find the areas of other polygons when their vertices are known.

  8. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [1] [2] Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

  9. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    The area of a triangle is its half of the product of the base times the height (length of the altitude). For a triangle A B C {\displaystyle \triangle ABC} with opposite sides a , b , c , {\displaystyle a,b,c,} if the three altitudes of the triangle are called h a , h b , h c , {\displaystyle h_{a},h_{b},h_{c},} the area is: