Search results
Results From The WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation.The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X 2, with R•S interpreted as the usual composition of binary relations R and S, and with the ...
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.
Another example is given by the divisibility (or "is-a-factor-of") relation |. For two natural numbers n and m, we write n|m if n divides m without remainder. One easily sees that this yields a partial order. For example neither 3 divides 13 nor 13 divides 3, so 3 and 13 are not comparable elements of the divisibility relation on the set of ...
Standard examples of posets arising in mathematics include: The real numbers , or in general any totally ordered set, ordered by the standard less-than-or-equal relation ≤, is a partial order. On the real numbers R {\displaystyle \mathbb {R} } , the usual less than relation < is a strict partial order.