When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  3. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges: = + = + = (+) = + (). Here θ i and θ f are, respectively, the initial and final angular positions, ω i and ω f are, respectively, the initial and final angular velocities, and α ...

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Transport theorem - Wikipedia

    en.wikipedia.org/wiki/Transport_theorem

    The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.

  6. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  7. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    If the kinetic energy is a homogeneous function of degree 2 of the generalized velocities, and the Lagrangian is explicitly time-independent, then: ((˙), (˙ ˙),) = ((˙), ˙ ˙,), (, ˙), where λ is a constant, then the Hamiltonian will be the total conserved energy, equal to the total kinetic and potential energies of the system: = + =.

  8. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s (the yellow area under the curve.)

  9. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).