Search results
Results From The WOW.Com Content Network
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
This can create a subtle difference, but in this example yields the same probability of 0.0437. In both cases, the two-tailed test reveals significance at the 5% level, indicating that the number of 6s observed was significantly different for this die than the expected number at the 5% level.
Lehr's [3] [4] (rough) rule of thumb says that the sample size (for each group) for the common case of a two-sided two-sample t-test with power 80% (=) and significance level = should be: , where is an estimate of the population variance and = the to-be-detected difference in the mean values of both samples.
Exact tests that are based on discrete test statistics may be conservative, indicating that the actual rejection rate lies below the nominal significance level . As an example, this is the case for Fisher's exact test and its more powerful alternative, Boschloo's test. If the test statistic is continuous, it will reach the significance level ...
Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value (for example, 1.96 for 5% two tailed) which makes it more convenient than the Student's t-test whose critical values are defined by the sample size (through the corresponding degrees of freedom). Both the Z ...
[4] [14] [15] [16] The apparent contradiction stems from the combination of a discrete statistic with fixed significance levels. [17] [18] Consider the following proposal for a significance test at the 5%-level: reject the null hypothesis for each table to which Fisher's test assigns a p-value equal to or smaller than 5%. Because the set of all ...
Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.