Search results
Results From The WOW.Com Content Network
The energy required to accelerate a 1 kg mass at 1 m/s 2 through a distance of 1 m. The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g. The heat required to raise the temperature of 0.239 g of water from 0 °C to 1 ...
For thermochemistry a calorie of 4.184 J is used, but other calories have also been defined, such as the International Steam Table calorie of 4.1868 J. In many regions, food energy is measured in large calories (a large calory is a kilocalory, equal to 1000 calories), sometimes written capitalized as Calories. In the European Union, food energy ...
Kinetic energy per unit mass: 1 / 2 v 2, where v is the speed (giving J/kg when v is in m/s). See also kinetic energy per unit mass of projectiles . Potential energy with respect to gravity, close to Earth, per unit mass: gh , where g is the acceleration due to gravity ( standardized as ≈9.8 m/s 2 ) and h is the height above the ...
J: Mach number (or mach) M: Ratio of flow velocity to the local speed of sound unitless: 1: Magnetic flux: Φ: Measure of magnetism, taking account of the strength and the extent of a magnetic field: weber (Wb) L 2 M T −2 I −1: scalar Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or ...
joule (J) Lagrangian density: joule per cubic meter (J/m 3) length: meter (m) ℓ: azimuthal quantum number: unitless magnetization: ampere per meter (A/m) moment of force often simply called moment or torque newton meter (N⋅m) mass: kilogram (kg)
1×10 59 J: Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy [342] [343] 1.4×10 59 J Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses. [344] [345] 10 62 1–2×10 62 J: Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way ...
If the amount of substance is measured as a number of moles, one gets the molar heat capacity instead, whose SI unit is joule per kelvin per mole, J⋅mol −1 ⋅K −1. If the amount is taken to be the volume of the sample (as is sometimes done in engineering), one gets the volumetric heat capacity , whose SI unit is joule per kelvin per ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =