When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  3. Specific activity - Wikipedia

    en.wikipedia.org/wiki/Specific_activity

    Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay: = /. Taking the natural logarithm of both sides, the half-life is given by / = ⁡.

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant, λ "lambda", the reciprocal of the mean lifetime (in s −1), sometimes referred to as simply decay rate.

  5. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type (called the parent nuclide) transforming to an atom of a different ...

  6. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]

  7. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    This value is in the denominator of the decay correcting fraction, so it is the same as multiplying the numerator by its inverse (), which is 2.82. (A simple way to check if you are using the decay correct formula right is to put in the value of the half-life in place of "t".

  8. Branching fraction - Wikipedia

    en.wikipedia.org/wiki/Branching_fraction

    The half-life of this isotope is 6.480 days, [2] which corresponds to a total decay constant of 0.1070 d −1. Then the partial decay constants, as computed from the branching fractions, are 0.1050 d −1 for ε/β + decays, and 2.14×10 −4 d −1 for β − decays. Their respective partial half-lives are 6.603 d and 347 d.

  9. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    This refers to the time required for half of a given number of radioactive atoms to decay and is inversely related to the isotope's decay constant, λ. Half-lives have been determined in laboratories for many radionuclides, and can range from nearly instantaneous—hydrogen-5 decays in less time than it takes for a photon to go from one end of ...