Search results
Results From The WOW.Com Content Network
A visual representation of the division order of universal forces. In physical cosmology, the quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but the temperature of the universe was still too high to allow quarks to bind together ...
The universe's expansion passed an inflection point about five or six billion years ago when the universe entered the modern "dark-energy-dominated era" where the universe's expansion is now accelerating rather than decelerating. The present-day universe is quite well understood, but beyond about 100 billion years of cosmic time (about 86 ...
This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary (that is, indivisible) given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.
However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars. [131] 1.05×10 12 (1.05 trillion) The estimated time by which the universe will have expanded by a factor of more than 10 26, reducing the average particle density to less than one particle per cosmological horizon volume ...
Diagram of Evolution of the universe from the Big Bang (left) to the present. The timeline of the universe begins with the Big Bang, 13.799 ± 0.021 billion years ago, [1] and follows the formation and subsequent evolution of the Universe up to the present day. Each era or age of the universe begins with an "epoch", a time of significant change ...
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles.
During inflation, the universe undergoes exponential expansion, and the particle horizon expands much more rapidly than previously assumed, so that regions presently on opposite sides of the observable universe are well inside each other's particle horizon. The observed isotropy of the CMB then follows from the fact that this larger region was ...