Search results
Results From The WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
3.1 Derivations of product, quotient, and power rules. 3.1.1 Logarithm of a product. ... 7.2 Derivatives of logarithmic functions. 7.3 Integral definition. 7.4 ...
This is the definition of the derivative. All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x, (+) = ′ [()] ′ (). This is the chain rule.
The derivative of the function given by () = + + is ′ = + () () + = + (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , (), (), and =, as well as the constant , were also used.
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.
Let = be an infinite series with real terms and let : be any real function such that (/) = for all positive integers n and the second derivative ″ exists at =. Then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges absolutely if f ( 0 ) = f ′ ( 0 ) = 0 {\displaystyle f(0)=f'(0)=0} and diverges otherwise.
The 9-person Symbolab team, based in Tel Aviv, will join Course Hero . The platforms will live under independent branding for the near future, according to Andrew Grauer, CEO of Course Hero.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.