Search results
Results From The WOW.Com Content Network
Just as the class P is defined in terms of polynomial running time, the class EXPTIME is the set of all decision problems that have exponential running time. In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O (2 p ( n ) ) time, where p ( n ) is a polynomial function of n .
Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...
If solving a problem on a graph in a natural representation, such as an adjacency matrix, is NP-complete, then solving the same problem on a succinct circuit representation is NEXPTIME-complete, because the input is exponentially smaller (under some mild condition that the NP-completeness reduction is achieved by a "projection").
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
As of late exponential integrators have become an active area of research, see Hochbruck and Ostermann (2010). [3] Originally developed for solving stiff differential equations, the methods have been used to solve partial differential equations including hyperbolic as well as parabolic problems [4] such as the heat equation.
A number of algorithms for other types of optimization problems work by solving linear programming problems as sub-problems. Historically, ideas from linear programming have inspired many of the central concepts of optimization theory, such as duality, decomposition, and the importance of convexity and its generalizations.
It is in EXPTIME because a trivial simulation requires O(k) time, and the input k is encoded using O(log k) bits which causes exponential number of simulations. It is EXPTIME-complete because, roughly speaking, we can use it to determine if a machine solving an EXPTIME problem accepts in an exponential number of steps; it will not use more. [4]
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.