Search results
Results From The WOW.Com Content Network
Propositional variables are the atomic formulas of propositional logic, and are often denoted using capital roman letters such as , and . [2] Example. In a given propositional logic, a formula can be defined as follows: Every propositional variable is a formula.
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.
In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.
In this example propositional logic assertions are checked using functions to represent the propositions a and b. The following Z3 script checks to see if a ∧ b ¯ ≡ a ¯ ∨ b ¯ {\displaystyle {\overline {a\land b}}\equiv {\overline {a}}\lor {\overline {b}}} :
Weights of propositional variables are given in the input of the problem. The weight of an assignment is the sum of weights of true variables. That problem is NP-complete (see Th. 1 of [26]). Other generalizations include satisfiability for first- and second-order logic, constraint satisfaction problems, 0-1 integer programming.
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example:
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...