Search results
Results From The WOW.Com Content Network
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
When both diagonals bisect another, it's a parallelogram. Ex-tangential quadrilateral: the four extensions of the sides are tangent to an excircle. An equilic quadrilateral has two opposite equal sides that when extended, meet at 60°. A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6]
The Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular, that is, if the quadrilateral is an orthodiagonal quadrilateral. [6]: p. 14 [7]: p. 169 For a self-crossing quadrilateral, the Varignon parallelogram can degenerate to four collinear points, forming a line segment traversed twice.
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid: It has two adjacent angles that are supplementary, that is, they add up to 180 degrees. The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal.
Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.
Artzy proves these propositions about quadrilateral shapes: If = (), then the quadrilateral is a parallelogram. If a parallelogram has | arg p | = | arg q |, then it is a rhombus. When p = 1 + i and q = (1 + i)/2, then the quadrilateral is square.
A quadrilateral is equidiagonal if and only if [5]: p.19, [4]: Cor.4 =. This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral.