Search results
Results From The WOW.Com Content Network
The TKE can be defined to be half the sum of the variances σ² (square of standard deviations σ) of the fluctuating velocity components: = (+ +) = ((′) ¯ + (′) ¯ + (′) ¯), where each turbulent velocity component is the difference between the instantaneous and the average velocity: ′ = ¯ (Reynolds decomposition).
Compared to turbulent flow, laminar flow tends to have a lower velocity and is generally at a lower Reynolds number. Turbulent flow, on the other hand, is irregular and travels at a higher speed. Therefore the flow velocity of a turbulent flow on one cross section is often assumed to be constant, or "flat". The "non-flat" flow velocity of ...
With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities.
The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...
where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well defined even in the case of turbulent flow, whereas the maximal ...
The laminar finite rate model computes the chemical source terms using the Arrhenius expressions and ignores turbulence fluctuations. This model provides with the exact solution for laminar flames but gives inaccurate solution for turbulent flames, in which turbulence highly affects the chemistry reaction rates, due to highly non-linear Arrhenius chemical kinetics.
This down-gradient flux equilibrates the concentration profile over time. This phenomenon is called molecular diffusion, and its mathematical aspect is captured by the diffusion equation. In turbulent flows, on top of mixing by molecular diffusion, eddies stir (Eddy diffusion § Note on stirring and mixing) the fluid.
The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows. [1]