Search results
Results From The WOW.Com Content Network
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
An improper integral may diverge in the sense that the limit defining it may not exist. In this case, there are more sophisticated definitions of the limit which can produce a convergent value for the improper integral. These are called summability methods. One summability method, popular in Fourier analysis, is that of Cesàro summation. The ...
The series can be compared to an integral to establish convergence or divergence. ... is a strictly monotone and divergent sequence and the ... is finitely convergent ...
Indeed, the sum of the absolute values of each term is + + + +, or the divergent harmonic series. According to the Riemann series theorem, any conditionally convergent series can be permuted so that its sum is any finite real number or so that it diverges. When an absolutely convergent series is rearranged, its sum is always preserved.
Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).
More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere point wise convergent to a function then the sequence converges in to its point wise limit, and in particular the integral of the limit is the limit of the integrals.
An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.