Search results
Results From The WOW.Com Content Network
The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during metaphase of mitosis or meiosis that prevents the separation of the duplicated chromosomes until each chromosome is properly attached to the ...
The mitotic spindle checkpoint occurs at the point in metaphase where all the chromosomes should/have aligned at the mitotic plate and be under bipolar tension. The tension created by this bipolar attachment is what is sensed, which initiates the anaphase entry.
When kinetochores are unattached to spindles, mitotic checkpoint complexes (MCC) and inhibit APC. In the absence of Apc15, MCCs and Cdc20 remain locked on the APC/C preventing its activity once the spindle checkpoint requirements are met. Apc15 mediates the turnover of Cdc20 and MCCs to provide information on the attachment state of ...
A spindle assembly checkpoint monitors the status of the spindle and links the metaphase-anaphase transition to proper bipolar attachment of all kinetochores to the mitotic spindle. The spindle assembly checkpoint inhibits the activity of the anaphase promoting complex by preventing degradation of downstream effectors, which otherwise lead to ...
The mitotic spindle checkpoint verifies that all the chromosomes are aligned properly on the metaphase plate and prevents premature entry into anaphase. Chromosomes lined up on the metaphase plate. Two views with the metaphase plate rotated 60°. Stages of early mitosis in a vertebrate cell with micrographs of chromatids
The cell division cycle protein 20 homolog is an essential regulator of cell division that is encoded by the CDC20 gene [5] [6] in humans. To the best of current knowledge its most important function is to activate the anaphase promoting complex (APC/C), a large 11-13 subunit complex that initiates chromatid separation and entrance into anaphase.
Cells with a defective G 2-M checkpoint will undergo apoptosis or death after cell division if they enter the M phase before repairing their DNA. [1] The defining biochemical feature of this checkpoint is the activation of M-phase cyclin-CDK complexes, which phosphorylate proteins that promote spindle assembly and bring the cell to metaphase. [2]
The spindle checkpoint system is a regulatory system that restrains progression through the metaphase-to-anaphase transition. The Mad2 gene was first identified in the yeast S. cerevisiae in a screen for genes which when mutated would confer sensitivity to microtubule poisons. [ 1 ]