Search results
Results From The WOW.Com Content Network
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
For symmetric difference, the sets ( ) and () = ( ) are always disjoint. So these two sets are equal if and only if they are both equal to ∅ . {\displaystyle \varnothing .} Moreover, L ∖ ( M R ) = ∅ {\displaystyle L\,\setminus \,(M\,\triangle \,R)=\varnothing } if and only if L ∩ M ∩ R = ∅ and L ⊆ M ∪ R . {\displaystyle L\cap M ...
These both events are mutually exclusive because even and odd outcome can never occur at same time. The union of both "even" and "odd" events give sample space of rolling the die, hence are collectively exhaustive.
If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B). This extends to a (finite or countably infinite) sequence of events. However, the probability of the union of an uncountable set of events is not the sum of their probabilities. For example, if Z is a normally distributed random variable, then P(Z = x) is 0 for any x, but P(Z ∈ R ...
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
Bounds on the probability that the sum of Bernoulli random variables is at least one, commonly known as the union bound, are provided by the Boole–Fréchet [4] [5] inequalities. While these bounds assume only univariate information, several bounds with knowledge of general bivariate probabilities, have been proposed too.
An elementary observation is that one cannot have exactly 2 subgroups of index 2, as the complement of their symmetric difference yields a third. This is a simple corollary of the above discussion (namely the projectivization of the vector space structure of the elementary abelian group