Ads
related to: perpendicular to the ellipse equation graph worksheet 1 10 to schooling
Search results
Results From The WOW.Com Content Network
The basic observation is that if, by completing the square, the quadratic expression can be reduced to a sum of two squares then the equation defines an ellipse, whereas if it reduces to a difference of two squares then the equation represents a hyperbola: (,) + (,) = (,) (,) =.
An ellipsograph is a mechanism that generates the shape of an ellipse. One common form of ellipsograph is known as the trammel of Archimedes. [1] It consists of two shuttles which are confined to perpendicular channels or rails and a rod which is attached to the shuttles by pivots at adjustable positions along the rod.
For an ellipse, two diameters are conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelogram (skewed compared to a bounding rectangle).
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
Take P to be the origin. For a curve given by the equation F(x, y)=0, if the equation of the tangent line at R=(x 0, y 0) is written in the form + = then the vector (cos α, sin α) is parallel to the segment PX, and the length of PX, which is the distance from the tangent line to the origin, is p.
An ellipse has two axes and two foci. Unlike most other elementary shapes, such as the circle and square, there is no algebraic equation to determine the perimeter of an ellipse. Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.
More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.
[10] If λ 1 and λ 2 have the same algebraic sign, then Q is a real ellipse, imaginary ellipse or real point if K has the same sign, has the opposite sign or is zero, respectively. If λ 1 and λ 2 have opposite algebraic signs, then Q is a hyperbola or two intersecting lines depending on whether K is nonzero or zero, respectively.