Ad
related to: primitive polynomial codes list excel formula guide example pdf format
Search results
Results From The WOW.Com Content Network
Here are some examples of such properties: A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that ...
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.
By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...
In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory), a minimal polynomial of an extension of finite fields; Primitive polynomial (ring theory), a polynomial with coprime coefficients
The polynomials with the largest order are called primitive polynomials, and for polynomials of degree with binary coefficients, have order . All errors in an odd number of bits will be detected by a polynomial which is a multiple of +. This is equivalent to the polynomial having an even number of terms with non-zero coefficients.
A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...
In the following examples it is best not to use the polynomial representation, as the meaning of x changes between the examples. The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0.